LOGICS OF TRUTHMAKER SEMANTICS: COMPARISON, COMPACTNESS AND DECIDABILITY

Søren Brinck Knudstorp October 9, 2023

University of Amsterdam

- Context, motivation and general aim
- Defining the truthmaker framework
- Presenting proof (outlines) of formal properties of 'truthmaker logics'
- Conclusion

Background

- (Finean) truthmaker semantics (TS) was introduced to model 'exact truthmaking'.
- Great interest in TS as a framework for analyzing various philosophical and linguistic phenomena, e.g., metaphysical grounding, counterfactuals and implicatures [cf. Fine (2017c)].
- But limited study of the various logics arising from the semantics [exceptions being Fine and Jago (2019) and Korbmacher (2022)].

This talk aims to address this gap by exploring numerous 'truthmaker logics'

- 1. Translations and Compactness
- 2. Finite Model Property (FMP) and Decidability
- 3. Connection with modal (information) logic [will perhaps be skipped]

Background

- (Finean) truthmaker semantics (TS) was introduced to model 'exact truthmaking'.
- Great interest in TS as a framework for analyzing various philosophical and linguistic phenomena, e.g., metaphysical grounding, counterfactuals and implicatures [cf. Fine (2017c)].
- But limited study of the various logics arising from the semantics [exceptions being Fine and Jago (2019) and Korbmacher (2022)].

This talk aims to address this gap by exploring numerous 'truthmaker logics'

- 1. Translations and Compactness
- 2. Finite Model Property (FMP) and Decidability
- 3. Connection with modal (information) logic [will perhaps be skipped]

Background

- (Finean) truthmaker semantics (TS) was introduced to model 'exact truthmaking'.
- Great interest in TS as a framework for analyzing various philosophical and linguistic phenomena, e.g., metaphysical grounding, counterfactuals and implicatures [cf. Fine (2017c)].
- But limited study of the various logics arising from the semantics [exceptions being Fine and Jago (2019) and Korbmacher (2022)].

This talk aims to address this gap by exploring numerous 'truthmaker logics'

- 1. Translations and Compactness
- 2. Finite Model Property (FMP) and Decidability
- 3. Connection with modal (information) logic [will perhaps be skipped]

Background

- (Finean) truthmaker semantics (TS) was introduced to model 'exact truthmaking'.
- Great interest in TS as a framework for analyzing various philosophical and linguistic phenomena, e.g., metaphysical grounding, counterfactuals and implicatures [cf. Fine (2017c)].
- But limited study of the various logics arising from the semantics [exceptions being Fine and Jago (2019) and Korbmacher (2022)].

This talk aims to address this gap by exploring numerous 'truthmaker logics'

- 1. Translations and Compactness
- 2. Finite Model Property (FMP) and Decidability
- 3. Connection with modal (information) logic [will perhaps be skipped]

Background

- (Finean) truthmaker semantics (TS) was introduced to model 'exact truthmaking'.
- Great interest in TS as a framework for analyzing various philosophical and linguistic phenomena, e.g., metaphysical grounding, counterfactuals and implicatures [cf. Fine (2017c)].
- But limited study of the various logics arising from the semantics [exceptions being Fine and Jago (2019) and Korbmacher (2022)].

This talk aims to address this gap by exploring numerous 'truthmaker logics'

- 1. Translations and Compactness
- 2. Finite Model Property (FMP) and Decidability
- 3. Connection with modal (information) logic [will perhaps be skipped]

But why be interested in the *logics* of truthmaker semantics?

Why logics of truthmaker semantics?

Several philosophical concepts find expression as consequence or equivalence within a truthmaker logic:

- According to Jago (2017), both samesaying of sentences and identity of propositions amount to truthmaker equivalence.
- As studied by Fine (2017a,b), notions of ground and of containment can be captured by truthmaker consequence.¹

But primarily, motivated by logical curiosity:

- Is truthmaker consequence **compact**? I.e., determined by behaviour on *finite* sets of formulae.
- · Is truthmaker consequence decidable?
- And can we develop something like a truthmaker analogue of the FMP?
- Do the answers to these questions vary across the truthmaker logics?
- And even if not, which if any of these logics coincide?

¹(i) P weakly grounds Q iff P truthmaker entails Q;

(ii) P weakly partially grounds Q iff $(P \land Q) \lor Q$ is truthmaker equivalent to Q; and

(iii) P contains Q iff $P \wedge Q$ is truthmaker equivalent to P.

Why logics of truthmaker semantics?

Several philosophical concepts find expression as consequence or equivalence within a truthmaker logic:

- According to Jago (2017), both samesaying of sentences and identity of propositions amount to truthmaker equivalence.
- As studied by Fine (2017a,b), notions of ground and of containment can be captured by truthmaker consequence.¹

But primarily, motivated by logical curiosity:

- Is truthmaker consequence **compact**? I.e., determined by behaviour on *finite* sets of formulae.
- · Is truthmaker consequence decidable?
- And can we develop something like a truthmaker analogue of the FMP?
- Do the answers to these questions vary across the truthmaker logics?
- And even if not, which if any of these logics coincide?

¹(i) P weakly grounds Q iff P truthmaker entails Q;

⁽ii) P weakly partially grounds Q iff $(P \land Q) \lor Q$ is truthmaker equivalent to Q; and

⁽iii) P contains Q iff $P \wedge Q$ is truthmaker equivalent to P.

Why logics of truthmaker semantics?

Several philosophical concepts find expression as consequence or equivalence within a truthmaker logic:

- According to Jago (2017), both samesaying of sentences and identity of propositions amount to truthmaker equivalence.
- As studied by Fine (2017a,b), notions of ground and of containment can be captured by truthmaker consequence.¹

But primarily, motivated by logical curiosity:

- Is truthmaker consequence **compact**? I.e., determined by behaviour on *finite* sets of formulae.
- · Is truthmaker consequence decidable?
- And can we develop something like a truthmaker analogue of the FMP?
- Do the answers to these questions vary across the truthmaker logics?
- And even if not, which if any of these logics coincide?

¹(i) P weakly grounds Q iff P truthmaker entails Q;

(ii) P weakly partially grounds Q iff $(P \land Q) \lor Q$ is truthmaker equivalent to Q; and

(iii) P contains Q iff $P \wedge Q$ is truthmaker equivalent to P.

Why logics of truthmaker semantics?

Several philosophical concepts find expression as consequence or equivalence within a truthmaker logic:

- According to Jago (2017), both samesaying of sentences and identity of propositions amount to truthmaker equivalence.
- As studied by Fine (2017a,b), notions of ground and of containment can be captured by truthmaker consequence.¹

But primarily, motivated by logical curiosity:

- Is truthmaker consequence compact? I.e., determined by behaviour on *finite* sets of formulae.
- Is truthmaker consequence decidable?
- And can we develop something like a truthmaker analogue of the FMP?
- Do the answers to these questions vary across the truthmaker logics?
- And even if not, which if any of these logics coincide?

¹(i) P weakly grounds Q iff P truthmaker entails Q;

- (ii) P weakly partially grounds Q iff $(P \land Q) \lor Q$ is truthmaker equivalent to Q; and
- (iii) P contains Q iff $P \wedge Q$ is truthmaker equivalent to P.

Why logics of truthmaker semantics?

Several philosophical concepts find expression as consequence or equivalence within a truthmaker logic:

- According to Jago (2017), both samesaying of sentences and identity of propositions amount to truthmaker equivalence.
- As studied by Fine (2017a,b), notions of ground and of containment can be captured by truthmaker consequence.¹

But primarily, motivated by logical curiosity:

- Is truthmaker consequence **compact**? I.e., determined by behaviour on *finite* sets of formulae.
- Is truthmaker consequence decidable?
- And can we develop something like a truthmaker analogue of the FMP?
- Do the answers to these questions vary across the truthmaker logics?
- And even if not, which if any of these logics coincide?

¹(i) P weakly grounds Q iff P truthmaker entails Q;

- (ii) P weakly partially grounds Q iff $(P \land Q) \lor Q$ is truthmaker equivalent to Q; and
- (iii) P contains Q iff $P \wedge Q$ is truthmaker equivalent to P.

Why logics of truthmaker semantics?

Several philosophical concepts find expression as consequence or equivalence within a truthmaker logic:

- According to Jago (2017), both samesaying of sentences and identity of propositions amount to truthmaker equivalence.
- As studied by Fine (2017a,b), notions of ground and of containment can be captured by truthmaker consequence.¹

But primarily, motivated by logical curiosity:

- Is truthmaker consequence compact? I.e., determined by behaviour on *finite* sets of formulae.
- Is truthmaker consequence decidable?
- And can we develop something like a truthmaker analogue of the FMP?
- Do the answers to these questions vary across the truthmaker logics?
- And even if not, which if any of these logics coincide?

¹(i) P weakly grounds Q iff P truthmaker entails Q;

- (ii) P weakly partially grounds Q iff $(P \land Q) \lor Q$ is truthmaker equivalent to Q; and
- (iii) P contains Q iff $P \wedge Q$ is truthmaker equivalent to P.

Why logics of truthmaker semantics?

Several philosophical concepts find expression as consequence or equivalence within a truthmaker logic:

- According to Jago (2017), both samesaying of sentences and identity of propositions amount to truthmaker equivalence.
- As studied by Fine (2017a,b), notions of ground and of containment can be captured by truthmaker consequence.¹

But primarily, motivated by logical curiosity:

- Is truthmaker consequence compact? I.e., determined by behaviour on *finite* sets of formulae.
- Is truthmaker consequence decidable?
- And can we develop something like a truthmaker analogue of the FMP?
- Do the answers to these questions vary across the truthmaker logics?
- And even if not, which if any of these logics coincide?

¹(i) P weakly grounds Q iff P truthmaker entails Q;

(ii) P weakly partially grounds Q iff $(P \land Q) \lor Q$ is truthmaker equivalent to Q; and

(iii) P contains Q iff $P \wedge Q$ is truthmaker equivalent to P.

Why logics of truthmaker semantics?

Several philosophical concepts find expression as consequence or equivalence within a truthmaker logic:

- According to Jago (2017), both samesaying of sentences and identity of propositions amount to truthmaker equivalence.
- As studied by Fine (2017a,b), notions of ground and of containment can be captured by truthmaker consequence.¹

But primarily, motivated by logical curiosity:

- Is truthmaker consequence compact? I.e., determined by behaviour on *finite* sets of formulae.
- Is truthmaker consequence decidable?
- And can we develop something like a truthmaker analogue of the FMP?
- Do the answers to these questions vary across the truthmaker logics?
- And even if not, which if any of these logics coincide?

¹(i) P weakly grounds Q iff P truthmaker entails Q;

⁽ii) P weakly partially grounds Q iff $(P \land Q) \lor Q$ is truthmaker equivalent to Q; and

⁽iii) P contains Q iff $P \wedge Q$ is truthmaker equivalent to P.

I've now discussed why it's worthwhile to study the metalogic of truthmaking [and hopefully convinced you in the process ^^] ... but what even is truthmaker semantics?

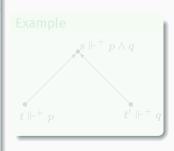
Definition (language and semantics)

The language is given by

 $\varphi ::= \ p \ | \ \neg \varphi \ | \ \varphi \vee \varphi \ | \ \varphi \wedge \varphi.$

The semantics are bilateral (truthmaking \mathbb{H}^+ and falsitymaking \mathbb{H}^-), and models come with two valuations V^+ , V^- :

$$\begin{split} \mathbb{M}, s \Vdash^{\pm} p & \text{iff} \quad s \in V^{\pm}(p). \\ \mathbb{M}, s \Vdash^{\pm} \neg \varphi & \text{iff} \quad \mathbb{M}, s \Vdash^{\mp} \varphi. \\ \mathbb{M}, s \Vdash^{+} \varphi \wedge \psi & \text{iff} \quad \exists t, t'(t \Vdash^{+} \varphi; t' \Vdash^{+} \psi; s = \sup\{t, t'\}) \end{split}$$



How about ' \lor ' and falsitymaking ' \land '?

Truthmaker framework: *Semantics* parameter 1

Non-incl.: $\mathbb{M}, s \Vdash^+ \varphi \lor \psi$ iff $\mathbb{M}, s \Vdash^+ \varphi$ or $\mathbb{M}, s \Vdash^+ \psi$.

 $\textit{Incl.:}\qquad \mathbb{M}, s \Vdash^+ \varphi \lor \psi \quad \textit{iff} \quad \mathbb{M}, s \Vdash^+ \varphi \; \textit{ or } \; \mathbb{M}, s \Vdash^+ \psi \; \textit{ or } \; \mathbb{M}, s \Vdash^+ \varphi \land \psi$

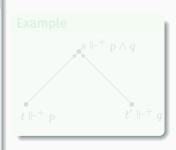
Definition (language and semantics)

The language is given by

 $\varphi ::= \ p \ | \ \neg \varphi \ | \ \varphi \vee \varphi \ | \ \varphi \wedge \varphi.$

The semantics are bilateral (truthmaking \Vdash^+ and falsitymaking \Vdash^-), and models come with two valuations V^+ , V^- :

$$\begin{split} \mathbb{M}, s \Vdash^{\pm} p & \text{iff} \quad s \in V^{\pm}(p). \\ \mathbb{M}, s \Vdash^{\pm} \neg \varphi & \text{iff} \quad \mathbb{M}, s \Vdash^{\mp} \varphi. \\ \mathbb{M}, s \Vdash^{+} \varphi \wedge \psi & \text{iff} \quad \exists t, t'(t \Vdash^{+} \varphi; t' \Vdash^{+} \psi; \\ s = \sup\{t, t'\}) \end{split}$$



How about ' \lor ' and falsitymaking ' \land '?

Truthmaker framework: Semantics parameter 1

Non-incl.: $\mathbb{M}, s \Vdash^+ \varphi \lor \psi$ iff $\mathbb{M}, s \Vdash^+ \varphi$ or $\mathbb{M}, s \Vdash^+ \psi$.

 $\textit{Incl.:}\qquad \mathbb{M}, s \Vdash^+ \varphi \lor \psi \quad \textit{iff} \quad \mathbb{M}, s \Vdash^+ \varphi \; \textit{or} \; \mathbb{M}, s \Vdash^+ \psi \; \textit{or} \; \mathbb{M}, s \Vdash^+ \varphi \land \psi$

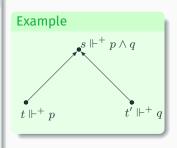
Definition (language and semantics)

The language is given by

 $\varphi ::= \ p \ | \ \neg \varphi \ | \ \varphi \vee \varphi \ | \ \varphi \wedge \varphi.$

The semantics are bilateral (truthmaking \Vdash^+ and falsitymaking \Vdash^-), and models come with two valuations V^+ , V^- :

$$\begin{split} \mathbb{M}, s \Vdash^{\pm} p & \text{iff} \quad s \in V^{\pm}(p). \\ \mathbb{M}, s \Vdash^{\pm} \neg \varphi & \text{iff} \quad \mathbb{M}, s \Vdash^{\mp} \varphi. \\ \mathbb{M}, s \Vdash^{+} \varphi \wedge \psi & \text{iff} \quad \exists t, t'(t \Vdash^{+} \varphi; t' \Vdash^{+} \psi; \\ s = \sup\{t, t'\}) \end{split}$$



How about ' \lor ' and falsitymaking ' \land '?

Truthmaker framework: Semantics parameter 1

Non-incl.: $\mathbb{M}, s \Vdash^+ \varphi \lor \psi$ iff $\mathbb{M}, s \Vdash^+ \varphi$ or $\mathbb{M}, s \Vdash^+ \psi$.

 $\textit{Incl.:}\qquad \mathbb{M}, s \Vdash^+ \varphi \lor \psi \quad \textit{iff} \quad \mathbb{M}, s \Vdash^+ \varphi \; \textit{or} \; \mathbb{M}, s \Vdash^+ \psi \; \textit{or} \; \mathbb{M}, s \Vdash^+ \varphi \land \psi$

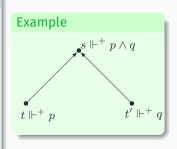
Definition (language and semantics)

The language is given by

 $\varphi ::= \ p \ | \ \neg \varphi \ | \ \varphi \vee \varphi \ | \ \varphi \wedge \varphi.$

The semantics are bilateral (truthmaking \Vdash^+ and falsitymaking \Vdash^-), and models come with two valuations V^+ , V^- :

$$\begin{split} \mathbb{M}, s \Vdash^{\pm} p & \text{iff} \quad s \in V^{\pm}(p). \\ \mathbb{M}, s \Vdash^{\pm} \neg \varphi & \text{iff} \quad \mathbb{M}, s \Vdash^{\mp} \varphi. \\ \mathbb{M}, s \Vdash^{+} \varphi \wedge \psi & \text{iff} \quad \exists t, t'(t \Vdash^{+} \varphi; t' \Vdash^{+} \psi; \\ s = \sup\{t, t'\}) \end{split}$$



How about ' \lor ' and falsitymaking ' \land '?

Truthmaker framework: Semantics parameter 1

Non-incl.: $\mathbb{M}, s \Vdash^+ \varphi \lor \psi$ iff $\mathbb{M}, s \Vdash^+ \varphi$ or $\mathbb{M}, s \Vdash^+ \psi$.

 $\textit{Incl.:}\qquad \mathbb{M}, s\Vdash^+\varphi \lor \psi \quad \text{iff} \quad \mathbb{M}, s\Vdash^+\varphi \; \text{ or } \; \mathbb{M}, s\Vdash^+\psi \; \text{ or } \; \mathbb{M}, s\Vdash^+\varphi \land \psi$

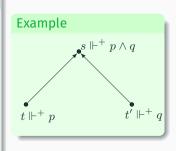
Definition (language and semantics)

The language is given by

 $\varphi ::= \ p \ | \ \neg \varphi \ | \ \varphi \vee \varphi \ | \ \varphi \wedge \varphi.$

The semantics are bilateral (truthmaking \Vdash^+ and falsitymaking \Vdash^-), and models come with two valuations V^+ , V^- :

$$\begin{split} \mathbb{M}, s \Vdash^{\pm} p & \text{iff} \quad s \in V^{\pm}(p). \\ \mathbb{M}, s \Vdash^{\pm} \neg \varphi & \text{iff} \quad \mathbb{M}, s \Vdash^{\mp} \varphi. \\ \mathbb{M}, s \Vdash^{+} \varphi \wedge \psi & \text{iff} \quad \exists t, t'(t \Vdash^{+} \varphi; \ t' \Vdash^{+} \psi; \\ s = \sup\{t, t'\}) \end{split}$$



How about ' \lor ' and falsitymaking ' \land '?

Truthmaker framework: Semantics parameter 1

 $\textit{Non-incl.:} \quad \mathbb{M}, s \Vdash^+ \varphi \lor \psi \quad \textit{iff} \quad \mathbb{M}, s \Vdash^+ \varphi \; \textit{ or } \; \mathbb{M}, s \Vdash^+ \psi.$

 $\textit{Incl.:}\qquad \mathbb{M}, s\Vdash^+\varphi\lor\psi \quad \textit{iff} \quad \mathbb{M}, s\Vdash^+\varphi \;\;\textit{or}\;\;\mathbb{M}, s\Vdash^+\psi \;\;\textit{or}\;\;\mathbb{M}, s\Vdash^+\varphi\land\psi$

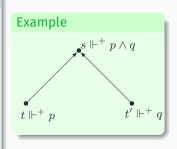
Definition (language and semantics)

The language is given by

 $\varphi ::= \ p \ | \ \neg \varphi \ | \ \varphi \vee \varphi \ | \ \varphi \wedge \varphi.$

The semantics are bilateral (truthmaking \Vdash^+ and falsitymaking \Vdash^-), and models come with two valuations V^+ , V^- :

$$\begin{split} \mathbb{M}, s \Vdash^{\pm} p & \text{iff} \quad s \in V^{\pm}(p). \\ \mathbb{M}, s \Vdash^{\pm} \neg \varphi & \text{iff} \quad \mathbb{M}, s \Vdash^{\mp} \varphi. \\ \mathbb{M}, s \Vdash^{+} \varphi \wedge \psi & \text{iff} \quad \exists t, t'(t \Vdash^{+} \varphi; \ t' \Vdash^{+} \psi; \\ s = \sup\{t, t'\}) \end{split}$$



How about ' \lor ' and falsitymaking ' \land '?

Truthmaker framework: Semantics parameter 1

 $\textit{Non-incl.:} \quad \mathbb{M}, s \Vdash^+ \varphi \lor \psi \quad \textit{iff} \quad \mathbb{M}, s \Vdash^+ \varphi \; \textit{ or } \; \mathbb{M}, s \Vdash^+ \psi.$

 $\textit{Incl.:}\qquad \mathbb{M}, s \Vdash^+ \varphi \lor \psi \quad \textit{iff} \quad \mathbb{M}, s \Vdash^+ \varphi \; \textit{ or } \; \mathbb{M}, s \Vdash^+ \psi \; \textit{ or } \; \mathbb{M}, s \Vdash^+ \varphi \land \psi$

Non-convexity

The presented semantics allow for non-convex truthmaking:

cases where $r \leq s \leq t, \mathbb{M}, r \Vdash^+ \varphi$ and $\mathbb{M}, t \Vdash^+ \varphi$, but $\mathbb{M}, s \not\Vdash^+ \varphi$.

To avoid this,² we can define convex truth- and falsitymaking:

Truthmaker framework: Semantics parameter 2

Convex: $\mathbb{M}, s \Vdash^{\pm, c} \varphi$:iff $\exists r, t \in S$ such that $\mathbb{M}, r \Vdash^{\pm} \varphi, \mathbb{M}, t \Vdash^{\pm} \varphi$, and $r \leq s \leq t$. 'Non-convex': $\mathbb{M}, s \Vdash^{\pm} \varphi$ iff $\mathbb{M}, s \Vdash^{\pm} \varphi$.

²If modeling, e.g., containment via truthmaker semantics, convexity enforces anti-symmetry of the containment relation.

Non-convexity

The presented semantics allow for non-convex truthmaking:

cases where $r \leq s \leq t, \mathbb{M}, r \Vdash^+ \varphi$ and $\mathbb{M}, t \Vdash^+ \varphi$, but $\mathbb{M}, s \not\Vdash^+ \varphi$.

To avoid this,² we can define convex truth- and falsitymaking:

²If modeling, e.g., containment via truthmaker semantics, convexity enforces anti-symmetry of the containment relation.

Non-convexity

The presented semantics allow for non-convex truthmaking:

cases where $r \leq s \leq t, \mathbb{M}, r \Vdash^+ \varphi$ and $\mathbb{M}, t \Vdash^+ \varphi$, but $\mathbb{M}, s \not\Vdash^+ \varphi$.

To avoid this,² we can define convex truth- and falsitymaking:

Truthmaker framework: Semantics parameter 2

$$\begin{array}{lll} \textit{Convex:} & \mathbb{M}, s \Vdash^{\pm, c} \varphi & \texttt{iff} & \exists r, t \in S \texttt{ such that } \mathbb{M}, r \Vdash^{\pm} \varphi, \mathbb{M}, t \Vdash^{\pm} \varphi, \\ & \text{and } r \leq s \leq t. \end{array} \\ \textit{`Non-convex':} & \mathbb{M}, s \Vdash^{\pm} \varphi & \texttt{iff} & \mathbb{M}, s \Vdash^{\pm} \varphi. \end{array}$$

²If modeling, e.g., containment via truthmaker semantics, convexity enforces anti-symmetry of the containment relation.

Truthmaker framework: Valuation parameter

- All: Any pairs of valuations $V^{\pm}: \mathbf{P} \to \mathcal{P}(S)$ are admissible.
- Closure under binary joins: if $\{s,t\} \subseteq V^{\pm}(p)$, then $\sup\{s,t\} \in V^{\pm}(p)$.
- Non-vacuity: $V^+(p) \neq \emptyset$ for all $p \in \mathbf{P}$ and/or $V^-(p) \neq \emptyset$ for all $p \in \mathbf{P}$.

Truthmaker framework: Frame parameter

 $S_1 := \{ (S, \leq) \mid (S, \leq) \text{ is a semilattice} \}.$

 $S_2 := \{(S, \leq) \mid (S, \leq) \text{ is a semilattice with a bottom element}\}.$

 $C_1 := \{(S, \leq) \mid (S, \leq) \text{ is a poset with all non-empty joins}\}.$

 $\mathcal{C}_2 := \{ (S, \leq) \mid (S, \leq) \text{ is a poset with all joins} \}$

(so C_2 is the class of complete lattices.)

Truthmaker logics

For any choice of semantics, valuations and frames, we get a *truthmaker consequence relation* by defining

 $\Gamma \Vdash^+ arphi$:iff whenever $\mathbb{M}, s \Vdash^+ \gamma$ for all $\gamma \in \Gamma$, it is also the case that $\mathbb{M}, s \Vdash^+ arphi$

Truthmaker framework: Valuation parameter

- All: Any pairs of valuations $V^{\pm}: \mathbf{P} \to \mathcal{P}(S)$ are admissible.
- Closure under binary joins: if $\{s,t\} \subseteq V^{\pm}(p)$, then $\sup\{s,t\} \in V^{\pm}(p)$.
- Non-vacuity: $V^+(p) \neq \emptyset$ for all $p \in \mathbf{P}$ and/or $V^-(p) \neq \emptyset$ for all $p \in \mathbf{P}$.

Truthmaker framework: Frame parameter

 $S_1 := \{ (S, \leq) \mid (S, \leq) \text{ is a semilattice} \}.$

 $S_2 := \{(S, \leq) \mid (S, \leq) \text{ is a semilattice with a bottom element}\}.$

 $C_1 := \{(S, \leq) \mid (S, \leq) \text{ is a poset with all non-empty joins}\}.$

 $\mathcal{C}_2 := \{ (S, \leq) \mid (S, \leq) \text{ is a poset with all joins} \}$

(so C_2 is the class of complete lattices.)

Truthmaker logics

For any choice of semantics, valuations and frames, we get a *truthmaker consequence relation* by defining

 $\Gamma \Vdash^+ arphi$:iff whenever $\mathbb{M}, s \Vdash^+ \gamma$ for all $\gamma \in \Gamma$, it is also the case that $\mathbb{M}, s \Vdash^+ arphi$

Truthmaker framework: Valuation parameter

- All: Any pairs of valuations $V^{\pm}: \mathbf{P} \to \mathcal{P}(S)$ are admissible.
- Closure under binary joins: if $\{s,t\} \subseteq V^{\pm}(p)$, then $\sup\{s,t\} \in V^{\pm}(p)$.
- Non-vacuity: $V^+(p) \neq \emptyset$ for all $p \in \mathbf{P}$ and/or $V^-(p) \neq \emptyset$ for all $p \in \mathbf{P}$.

Truthmaker framework: Frame parameter

 $S_1 := \{(S, \leq) \mid (S, \leq) \text{ is a semilattice}\}.$

 $S_2 := \{(S, \leq) \mid (S, \leq) \text{ is a semilattice with a bottom element}\}.$

 $C_1 := \{(S, \leq) \mid (S, \leq) \text{ is a poset with all non-empty joins}\}.$

 $\mathcal{C}_2 := \{(S, \leq) \mid (S, \leq) \text{ is a poset with all joins} \}$

(so \mathcal{C}_2 is the class of complete lattices.)

Truthmaker logics

For any choice of semantics, valuations and frames, we get a *truthmaker consequence relation* by defining

 $\Gamma \Vdash^+ arphi$:iff whenever $\mathbb{M}, s \Vdash^+ \gamma$ for all $\gamma \in \Gamma$, it is also the case that $\mathbb{M}, s \Vdash^+ arphi$

Truthmaker framework: Valuation parameter

- All: Any pairs of valuations $V^{\pm}: \mathbf{P} \to \mathcal{P}(S)$ are admissible.
- Closure under binary joins: if $\{s,t\} \subseteq V^{\pm}(p)$, then $\sup\{s,t\} \in V^{\pm}(p)$.
- Non-vacuity: $V^+(p) \neq \emptyset$ for all $p \in \mathbf{P}$ and/or $V^-(p) \neq \emptyset$ for all $p \in \mathbf{P}$.

Truthmaker framework: Frame parameter

 $S_1 := \{(S, \leq) \mid (S, \leq) \text{ is a semilattice}\}.$

 $S_2 := \{(S, \leq) \mid (S, \leq) \text{ is a semilattice with a bottom element}\}.$

 $C_1 := \{(S, \leq) \mid (S, \leq) \text{ is a poset with all non-empty joins}\}.$

 $\mathcal{C}_2 := \{(S, \leq) \mid (S, \leq) \text{ is a poset with all joins}\}$

(so C_2 is the class of complete lattices.)

Truthmaker logics

For any choice of semantics, valuations and frames, we get a *truthmaker consequence relation* by defining

 $\Gamma \Vdash^+ \varphi : \text{iff whenever } \mathbb{M}, s \Vdash^+ \gamma \text{ for all } \gamma \in \Gamma \text{, it is also the case that } \mathbb{M}, s \Vdash^+ \varphi$

So we have (at least) $2 \times 2 \times 4 \times 4 = 64$ logics to survey . . .

Luckily, they can be dealt with (rather) uniformly!

- 1. Inherit compactness and recursive enumerability from first-order logic through translations *for semilattice* truthmaker logics.
- 2. Develop and prove a truthmaker analogue of the finite model property to obtain decidability for semilattice truthmaker logics.
- 3. Show that truthmaker consequence is invariant for choice of frames, which also entails that 'all' truthmaker logics are (compact and) decidable.

- 1. Inherit compactness and recursive enumerability from first-order logic through translations *for semilattice truthmaker logics*.
- 2. Develop and prove a truthmaker analogue of the finite model property to obtain decidability for semilattice truthmaker logics.
- 3. Show that truthmaker consequence is invariant for choice of frames, which also entails that 'all' truthmaker logics are (compact and) decidable.

- 1. Inherit compactness and recursive enumerability from first-order logic through translations *for semilattice truthmaker logics*.
- 2. Develop and prove a truthmaker analogue of the finite model property to obtain decidability for semilattice truthmaker logics.
- Show that truthmaker consequence is invariant for choice of frames, which also entails that 'all' truthmaker logics are (compact and) decidable.

- 1. Inherit compactness and recursive enumerability from first-order logic through translations *for semilattice truthmaker logics*.
- 2. Develop and prove a truthmaker analogue of the finite model property to obtain decidability for semilattice truthmaker logics.
- 3. Show that truthmaker consequence is invariant for choice of frames, which also entails that 'all' truthmaker logics are (compact and) decidable.

Proceeding from here, our proof strategy is as follows:

- 1. Inherit compactness and recursive enumerability from first-order logic through translations *for semilattice truthmaker logics*.
- 2. Develop and prove a truthmaker analogue of the finite model property to obtain decidability for semilattice truthmaker logics.
- 3. Show that truthmaker consequence is invariant for choice of frames, which also entails that 'all' truthmaker logics are (compact and) decidable.

Translations into first-order logic

Definition (translation into FOL)

We define the following translation-pair into first-order logic (FOL):

Proposition (correspondence)

For all models \mathbb{M} and all $\varphi \in \mathcal{L}_T$, we have:

For all states $s \in \mathbb{M}$: (i) $\mathbb{M}, s \Vdash^+ \varphi$ iff $\mathbb{M} \models ST^+_x(\varphi)[s]$; and (ii) $\mathbb{M}, s \Vdash^- \varphi$ iff $\mathbb{M} \models ST^-_x(\varphi)[s]$.

Translations into first-order logic

Definition (translation into FOL)

We define the following translation-pair into first-order logic (FOL):

$ST_x^+(p)$	=	$P^T x$
$ST_x^-(p)$	=	$P^F x$
$ST_x^+(\neg\phi)$	=	$ST_x^-(\phi)$
$ST_x^-(\neg\phi)$	=	$ST_x^+(\phi)$
$ST_x^+(\phi \wedge \psi)$	=	$\exists y, z \left(x = \sup\{y, z\} \land ST_y^+(\phi) \land ST_z^+(\psi) \right)$
$ST_x^-(\phi \wedge \psi)$	=	$ST_x^-(\phi) \lor ST_x^-(\psi)$
$ST_x^+(\phi \lor \psi)$	=	$ST_x^+(\phi) \lor ST_x^+(\psi)$
$ST_x^-(\phi \lor \psi)$	=	$\exists y, z \big(x = \sup\{y, z\} \land ST_y^-(\phi) \land ST_z^-(\psi) \big)$

Proposition (correspondence)

For all models M and all $\varphi \in \mathcal{L}_T$, we have:

For all states $s \in \mathbb{M}$: (i) $\mathbb{M}, s \Vdash^+ \varphi$ iff $\mathbb{M} \models ST_x^+(\varphi)[s]$; and (ii) $\mathbb{M}, s \Vdash^- \varphi$ iff $\mathbb{M} \models ST_x^-(\varphi)[s]$.

Translations into first-order logic

Definition (translation into FOL)

We define the following translation-pair into first-order logic (FOL):

$ST_x^+(p)$	=	$P^T x$
$ST_x^-(p)$	=	$P^F x$
$ST_x^+(\neg\phi)$	=	$ST_x^-(\phi)$
$ST_x^-(\neg\phi)$	=	$ST_x^+(\phi)$
$ST_x^+(\phi \wedge \psi)$	=	$\exists y, z \left(x = \sup\{y, z\} \land ST_y^+(\phi) \land ST_z^+(\psi) \right)$
$ST_x^-(\phi \wedge \psi)$	=	$ST_x^-(\phi) \lor ST_x^-(\psi)$
$ST_x^+(\phi \lor \psi)$	=	$ST_x^+(\phi) \lor ST_x^+(\psi)$
$ST_x^-(\phi \lor \psi)$	=	$\exists y, z \left(x = \sup\{y, z\} \land ST_y^-(\phi) \land ST_z^-(\psi) \right)$

Proposition (correspondence)

For all models \mathbb{M} and all $\varphi \in \mathcal{L}_T$, we have:

$$\begin{array}{lll} \text{For all states } s \in \mathbb{M}: & (i) & \mathbb{M}, s \Vdash^+ \varphi & \text{iff} & \mathbb{M} \models ST_x^+(\varphi)[s]; \text{ and} \\ & (ii) & \mathbb{M}, s \Vdash^- \varphi & \text{iff} & \mathbb{M} \models ST_x^-(\varphi)[s]. \end{array}$$

Compactness and recursive enumerability

Proposition (semilattice compactness and r.e.)

All semilattice truthmaker logics are

- **compact:** *if* $\Gamma \Vdash^+ \varphi$ *, then* $\Gamma_F \Vdash^+ \varphi$ for some finite $\Gamma_F \subseteq \Gamma$; and
- **r.e.:** For finite Γ_F , we can effectively enumerate (Γ_F, φ) s.t. $\Gamma_F \Vdash^+ \varphi$.

Proof.

Let *J* be the first-order formula defining (join-)semilattices. For **compactness**, the argument is essentially that

$$\Gamma \Vdash^+ \varphi \quad \text{iff} \quad ST_x^+(\Gamma) \cup \{J\} \vDash ST_x^+(\varphi)$$

$$\stackrel{(c)}{\text{iff}} \quad ST_x^+(\Gamma_F) \cup \{J\} \vDash ST_x^+(\varphi) \quad \text{iff} \quad \Gamma_F \Vdash^+ \varphi,$$

where $\Gamma_F \subseteq \Gamma$ is finite.

For **r.e.**, the argument is essentially that

$$\Gamma_F \Vdash^+ \varphi \qquad \text{iff} \qquad ST_x^+(\Gamma_F) \cup \{J\} \vDash ST_x^+(\varphi)$$

$$\text{iff} \qquad \vDash \bigwedge (ST_x^+(\Gamma_F) \cup \{J\}) \to ST_x^+(\varphi).$$

Compactness and recursive enumerability

Proposition (semilattice compactness and r.e.)

All semilattice truthmaker logics are

- **compact:** *if* $\Gamma \Vdash^+ \varphi$ *, then* $\Gamma_F \Vdash^+ \varphi$ for some finite $\Gamma_F \subseteq \Gamma$; and
- **r.e.:** For finite Γ_F , we can effectively enumerate (Γ_F, φ) s.t. $\Gamma_F \Vdash^+ \varphi$.

Proof.

Let J be the first-order formula defining (join-)semilattices. For ${\bf compactness},$ the argument is essentially that

$$\Gamma \Vdash^{+} \varphi \quad \text{iff} \quad ST_{x}^{+}(\Gamma) \cup \{J\} \vDash ST_{x}^{+}(\varphi)$$

$$\stackrel{(c)}{\text{iff}} \quad ST_{x}^{+}(\Gamma_{F}) \cup \{J\} \vDash ST_{x}^{+}(\varphi) \quad \text{iff} \quad \Gamma_{F} \Vdash^{+} \varphi,$$

where $\Gamma_F \subseteq \Gamma$ is finite.

For **r.e.**, the argument is essentially that

$$\Gamma_F \Vdash^+ \varphi \qquad \text{iff} \qquad ST_x^+(\Gamma_F) \cup \{J\} \vDash ST_x^+(\varphi)$$
$$\text{iff} \qquad \vDash \bigwedge (ST_x^+(\Gamma_F) \cup \{J\}) \to ST_x^+(\varphi).$$

Compactness and recursive enumerability

Proposition (semilattice compactness and r.e.)

All semilattice truthmaker logics are

- compact: if $\Gamma \Vdash^+ \varphi$, then $\Gamma_F \Vdash^+ \varphi$ for some finite $\Gamma_F \subseteq \Gamma$; and
- **r.e.:** For finite Γ_F , we can effectively enumerate (Γ_F, φ) s.t. $\Gamma_F \Vdash^+ \varphi$.

Proof.

Let J be the first-order formula defining (join-)semilattices. For ${\bf compactness},$ the argument is essentially that

$$\Gamma \Vdash^+ \varphi \quad \text{iff} \quad ST_x^+(\Gamma) \cup \{J\} \vDash ST_x^+(\varphi) \\ \text{iff} \quad ST_x^+(\Gamma_F) \cup \{J\} \vDash ST_x^+(\varphi) \quad \text{iff} \quad \Gamma_F \Vdash^+ \varphi.$$

where $\Gamma_F \subseteq \Gamma$ is finite.

For **r.e.**, the argument is essentially that

$$\Gamma_F \Vdash^+ \varphi \qquad \text{iff} \qquad ST_x^+(\Gamma_F) \cup \{J\} \vDash ST_x^+(\varphi) \\ \text{iff} \qquad \vDash \bigwedge (ST_x^+(\Gamma_F) \cup \{J\}) \to ST_x^+(\varphi).$$

Initial observation: A direct analogue of, e.g., the modal logic FMP is trivial and does nothing for proving decidability. Instead, we prove the following:

Theorem (Truthmaker FMP)

For any model $\mathbb{M}_0 = (S_0, \leq_0, V_0^+, V_0^-)$, state $s \in S_0$, and finite set of formulas $\Gamma_F \subseteq \mathcal{L}_T$ s.t. $\mathbb{M}_0, s \Vdash^+ \Gamma_F$, there is a finite submodel \mathbb{M}_1 s.t. (a) $\mathbb{M}_1, s \Vdash^+ \Gamma_F$, and (b) for all $\varphi \in \mathcal{L}_T$: $\mathbb{M}_0, s \nvDash^{\pm} \varphi \implies \mathbb{M}_1, s \nvDash^{\pm} \varphi$.

Proof (idea).

In outline, the proof is as follows:

- For each $\gamma \in \Gamma_F$, we can choose a *finite* set of states $T(\gamma, s)$ by virtue of which $s \Vdash^+ \gamma$.
- Define $\mathbb{M}_1 := (S_1, \leq_1, V_1^+, V_1^-)$ where (S_1, \leq_1) is the sub-semilattice generated by $\bigcup_{\gamma \in \Gamma_F} T(\gamma, s)$, and V_1^{\pm} are the restrictions of V_0^{\pm} .
- One can then show (a) and (b).

Corollary (semilattice decidability)

Initial observation: A direct analogue of, e.g., the modal logic FMP is trivial and does nothing for proving decidability. Instead, we prove the following:

Theorem (Truthmaker FMP)

For any model $\mathbb{M}_0 = (S_0, \leq_0, V_0^+, V_0^-)$, state $s \in S_0$, and finite set of formulas $\Gamma_F \subseteq \mathcal{L}_T$ s.t. $\mathbb{M}_0, s \Vdash^+ \Gamma_F$, there is a finite submodel \mathbb{M}_1 s.t. (a) $\mathbb{M}_1, s \Vdash^+ \Gamma_F$, and (b) for all $\varphi \in \mathcal{L}_T$: $\mathbb{M}_0, s \nvDash^{\pm} \varphi \implies \mathbb{M}_1, s \nvDash^{\pm} \varphi$.

Proof (idea).

In outline, the proof is as follows:

- For each $\gamma \in \Gamma_F$, we can choose a *finite* set of states $T(\gamma, s)$ by virtue of which $s \Vdash^+ \gamma$.
- Define $\mathbb{M}_1 := (S_1, \leq_1, V_1^+, V_1^-)$ where (S_1, \leq_1) is the sub-semilattice generated by $\bigcup_{\gamma \in \Gamma_F} T(\gamma, s)$, and V_1^{\pm} are the restrictions of V_0^{\pm} .
- One can then show (a) and (b).

Corollary (semilattice decidability)

Initial observation: A direct analogue of, e.g., the modal logic FMP is trivial and does nothing for proving decidability. Instead, we prove the following:

Theorem (Truthmaker FMP)

For any model $\mathbb{M}_0 = (S_0, \leq_0, V_0^+, V_0^-)$, state $s \in S_0$, and finite set of formulas $\Gamma_F \subseteq \mathcal{L}_T$ s.t. $\mathbb{M}_0, s \Vdash^+ \Gamma_F$, there is a finite submodel \mathbb{M}_1 s.t. (a) $\mathbb{M}_1, s \Vdash^+ \Gamma_F$, and (b) for all $\varphi \in \mathcal{L}_T$: $\mathbb{M}_0, s \nvDash^{\pm} \varphi \implies \mathbb{M}_1, s \nvDash^{\pm} \varphi$.

Proof (idea).

In outline, the proof is as follows:

- For each $\gamma \in \Gamma_F$, we can choose a *finite* set of states $T(\gamma, s)$ by virtue of which $s \Vdash^+ \gamma$.
- Define $\mathbb{M}_1 := (S_1, \leq_1, V_1^+, V_1^-)$ where (S_1, \leq_1) is the sub-semilattice generated by $\bigcup_{\gamma \in \Gamma_F} T(\gamma, s)$, and V_1^{\pm} are the restrictions of V_0^{\pm} .
- One can then show (a) and (b).

Corollary (semilattice decidability)

Initial observation: A direct analogue of, e.g., the modal logic FMP is trivial and does nothing for proving decidability. Instead, we prove the following:

Theorem (Truthmaker FMP)

For any model $\mathbb{M}_0 = (S_0, \leq_0, V_0^+, V_0^-)$, state $s \in S_0$, and finite set of formulas $\Gamma_F \subseteq \mathcal{L}_T$ s.t. $\mathbb{M}_0, s \Vdash^+ \Gamma_F$, there is a finite submodel \mathbb{M}_1 s.t. (a) $\mathbb{M}_1, s \Vdash^+ \Gamma_F$, and (b) for all $\varphi \in \mathcal{L}_T$: $\mathbb{M}_0, s \nvDash^{\pm} \varphi \implies \mathbb{M}_1, s \nvDash^{\pm} \varphi$.

Proof (idea).

In outline, the proof is as follows:

- For each $\gamma \in \Gamma_F$, we can choose a *finite* set of states $T(\gamma, s)$ by virtue of which $s \Vdash^+ \gamma$.
- Define $\mathbb{M}_1 := (S_1, \leq_1, V_1^+, V_1^-)$ where (S_1, \leq_1) is the sub-semilattice generated by $\bigcup_{\gamma \in \Gamma_F} T(\gamma, s)$, and V_1^{\pm} are the restrictions of V_0^{\pm} .
- One can then show (a) and (b).

Corollary (semilattice decidability)

Initial observation: A direct analogue of, e.g., the modal logic FMP is trivial and does nothing for proving decidability. Instead, we prove the following:

Theorem (Truthmaker FMP)

For any model $\mathbb{M}_0 = (S_0, \leq_0, V_0^+, V_0^-)$, state $s \in S_0$, and finite set of formulas $\Gamma_F \subseteq \mathcal{L}_T$ s.t. $\mathbb{M}_0, s \Vdash^+ \Gamma_F$, there is a finite submodel \mathbb{M}_1 s.t. (a) $\mathbb{M}_1, s \Vdash^+ \Gamma_F$, and (b) for all $\varphi \in \mathcal{L}_T$: $\mathbb{M}_0, s \nvDash^{\pm} \varphi \implies \mathbb{M}_1, s \nvDash^{\pm} \varphi$.

Proof (idea).

In outline, the proof is as follows:

- For each $\gamma \in \Gamma_F$, we can choose a *finite* set of states $T(\gamma, s)$ by virtue of which $s \Vdash^+ \gamma$.
- Define $\mathbb{M}_1 := (S_1, \leq_1, V_1^+, V_1^-)$ where (S_1, \leq_1) is the sub-semilattice generated by $\bigcup_{\gamma \in \Gamma_F} T(\gamma, s)$, and V_1^{\pm} are the restrictions of V_0^{\pm} .
- One can then show (a) and (b).

Corollary (semilattice decidability)

Initial observation: A direct analogue of, e.g., the modal logic FMP is trivial and does nothing for proving decidability. Instead, we prove the following:

Theorem (Truthmaker FMP)

For any model $\mathbb{M}_0 = (S_0, \leq_0, V_0^+, V_0^-)$, state $s \in S_0$, and finite set of formulas $\Gamma_F \subseteq \mathcal{L}_T$ s.t. $\mathbb{M}_0, s \Vdash^+ \Gamma_F$, there is a finite submodel \mathbb{M}_1 s.t. (a) $\mathbb{M}_1, s \Vdash^+ \Gamma_F$, and (b) for all $\varphi \in \mathcal{L}_T$: $\mathbb{M}_0, s \nvDash^{\pm} \varphi \implies \mathbb{M}_1, s \nvDash^{\pm} \varphi$.

Proof (idea).

In outline, the proof is as follows:

- For each $\gamma \in \Gamma_F$, we can choose a *finite* set of states $T(\gamma, s)$ by virtue of which $s \Vdash^+ \gamma$.
- Define $\mathbb{M}_1 := (S_1, \leq_1, V_1^+, V_1^-)$ where (S_1, \leq_1) is the sub-semilattice generated by $\bigcup_{\gamma \in \Gamma_F} T(\gamma, s)$, and V_1^{\pm} are the restrictions of V_0^{\pm} .
- One can then show (a) and (b).

Corollary (semilattice decidability)

Initial observation: A direct analogue of, e.g., the modal logic FMP is trivial and does nothing for proving decidability. Instead, we prove the following:

Theorem (Truthmaker FMP)

For any model $\mathbb{M}_0 = (S_0, \leq_0, V_0^+, V_0^-)$, state $s \in S_0$, and finite set of formulas $\Gamma_F \subseteq \mathcal{L}_T$ s.t. $\mathbb{M}_0, s \Vdash^+ \Gamma_F$, there is a finite submodel \mathbb{M}_1 s.t. (a) $\mathbb{M}_1, s \Vdash^+ \Gamma_F$, and (b) for all $\varphi \in \mathcal{L}_T$: $\mathbb{M}_0, s \nvDash^{\pm} \varphi \implies \mathbb{M}_1, s \nvDash^{\pm} \varphi$.

Proof (idea).

In outline, the proof is as follows:

- For each $\gamma \in \Gamma_F$, we can choose a *finite* set of states $T(\gamma, s)$ by virtue of which $s \Vdash^+ \gamma$.
- Define $\mathbb{M}_1 := (S_1, \leq_1, V_1^+, V_1^-)$ where (S_1, \leq_1) is the sub-semilattice generated by $\bigcup_{\gamma \in \Gamma_F} T(\gamma, s)$, and V_1^{\pm} are the restrictions of V_0^{\pm} .
- One can then show (a) and (b).

Corollary (semilattice decidability)

Initial observation: A direct analogue of, e.g., the modal logic FMP is trivial and does nothing for proving decidability. Instead, we prove the following:

Theorem (Truthmaker FMP)

For any model $\mathbb{M}_0 = (S_0, \leq_0, V_0^+, V_0^-)$, state $s \in S_0$, and finite set of formulas $\Gamma_F \subseteq \mathcal{L}_T$ s.t. $\mathbb{M}_0, s \Vdash^+ \Gamma_F$, there is a finite submodel \mathbb{M}_1 s.t. (a) $\mathbb{M}_1, s \Vdash^+ \Gamma_F$, and (b) for all $\varphi \in \mathcal{L}_T$: $\mathbb{M}_0, s \nvDash^{\pm} \varphi \implies \mathbb{M}_1, s \nvDash^{\pm} \varphi$.

Proof (idea).

In outline, the proof is as follows:

- For each $\gamma \in \Gamma_F$, we can choose a *finite* set of states $T(\gamma, s)$ by virtue of which $s \Vdash^+ \gamma$.
- Define $\mathbb{M}_1 := (S_1, \leq_1, V_1^+, V_1^-)$ where (S_1, \leq_1) is the sub-semilattice generated by $\bigcup_{\gamma \in \Gamma_F} T(\gamma, s)$, and V_1^{\pm} are the restrictions of V_0^{\pm} .
- One can then show (a) and (b).

Corollary (semilattice decidability)

Initial observation: A direct analogue of, e.g., the modal logic FMP is trivial and does nothing for proving decidability. Instead, we prove the following:

Theorem (Truthmaker FMP)

For any model $\mathbb{M}_0 = (S_0, \leq_0, V_0^+, V_0^-)$, state $s \in S_0$, and finite set of formulas $\Gamma_F \subseteq \mathcal{L}_T$ s.t. $\mathbb{M}_0, s \Vdash^+ \Gamma_F$, there is a finite submodel \mathbb{M}_1 s.t. (a) $\mathbb{M}_1, s \Vdash^+ \Gamma_F$, and (b) for all $\varphi \in \mathcal{L}_T$: $\mathbb{M}_0, s \nvDash^{\pm} \varphi \implies \mathbb{M}_1, s \nvDash^{\pm} \varphi$.

Proof (idea).

In outline, the proof is as follows:

- For each $\gamma \in \Gamma_F$, we can choose a *finite* set of states $T(\gamma, s)$ by virtue of which $s \Vdash^+ \gamma$.
- Define $\mathbb{M}_1 := (S_1, \leq_1, V_1^+, V_1^-)$ where (S_1, \leq_1) is the sub-semilattice generated by $\bigcup_{\gamma \in \Gamma_F} T(\gamma, s)$, and V_1^{\pm} are the restrictions of V_0^{\pm} .
- One can then show (a) and (b).

Corollary (semilattice decidability)

What about other classes of frames?

Limitation of translation method: it only applies when conditions are first-order definable. And having, e.g., all joins is not.

Definition (recall)

 $\mathcal{S}_1 := \{ (S, \leq) \mid (S, \leq) \text{ is a semilattice} \},\$

 $S_2 := \{ (S, \leq) \mid (S, \leq) \text{ is a semilattice with a bottom element} \},\$

 $\mathcal{C}_1 := \{ (S, \leq) \mid (S, \leq) \text{ is a poset with all non-empty joins} \},\$

 $\mathcal{C}_2 := \{ (S, \leq) \mid (S, \leq) \text{ is a poset with all joins} \}$

Theorem (Entailment Invariance for Choice of Frames)

Given any choice of semantics and valuations, and any $X, Y \in \{S_1, S_2, C_1, C_2\}$

 $\Gamma \Vdash^+_X \varphi$ iff $\Gamma \Vdash^+_Y \varphi$.

Proof idea.

Clearly, $\Gamma \Vdash_{S_1}^+ \varphi \Rightarrow \Gamma \Vdash_{S_2/C_1}^+ \varphi \Rightarrow \Gamma \Vdash_{C_2}^+ \varphi$. Therefore, $\Gamma \Vdash_{S_1}^+ \varphi \Leftarrow \Gamma \Vdash_{C_2}^+ \varphi$ suffices, which is a consequence of our 'Completion Lemma' showing how to complete a semilattice into a complete lattice in a satisfaction-preserving and -reflecting way.

Corollary (compactness and decidability)

Definition (recall)

 $S_1 := \{ (S, \leq) \mid (S, \leq) \text{ is a semilattice} \},\$

 $S_2 := \{(S, \leq) \mid (S, \leq) \text{ is a semilattice with a bottom element}\},\$

 $\mathcal{C}_1 := \{ (S, \leq) \mid (S, \leq) \text{ is a poset with all non-empty joins} \},\$

 $\mathcal{C}_2 := \{ (S, \leq) \mid (S, \leq) \text{ is a poset with all joins} \}$

Theorem (Entailment Invariance for Choice of Frames)

Given any choice of semantics and valuations, and any $X, Y \in \{S_1, S_2, C_1, C_2\}$

 $\Gamma \Vdash^+_X \varphi$ iff $\Gamma \Vdash^+_Y \varphi$.

Proof idea.

Clearly, $\Gamma \Vdash_{S_1}^+ \varphi \Rightarrow \Gamma \Vdash_{S_2/C_1}^+ \varphi \Rightarrow \Gamma \Vdash_{C_2}^+ \varphi$. Therefore, $\Gamma \Vdash_{S_1}^+ \varphi \Leftarrow \Gamma \Vdash_{C_2}^+ \varphi$ suffices, which is a consequence of our 'Completion Lemma' showing how to complete a semilattice into a complete lattice in a satisfaction-preserving and -reflecting way.

Corollary (compactness and decidability)

Definition (recall)

 $S_1 := \{ (S, \leq) \mid (S, \leq) \text{ is a semilattice} \},\$

 $S_2 := \{(S, \leq) \mid (S, \leq) \text{ is a semilattice with a bottom element}\},\$

 $C_1 := \{(S, \leq) \mid (S, \leq) \text{ is a poset with all non-empty joins}\},\$

 $\mathcal{C}_2 := \{ (S, \leq) \mid (S, \leq) \text{ is a poset with all joins} \}$

Theorem (Entailment Invariance for Choice of Frames)

Given any choice of semantics and valuations, and any $X, Y \in \{S_1, S_2, C_1, C_2\}$,

 $\Gamma \Vdash^+_X \varphi \quad \text{ iff } \quad \Gamma \Vdash^+_Y \varphi.$

Proof idea.

Clearly, $\Gamma \Vdash_{S_1}^+ \varphi \Rightarrow \Gamma \Vdash_{S_2/C_1}^+ \varphi \Rightarrow \Gamma \Vdash_{C_2}^+ \varphi$. Therefore, $\Gamma \Vdash_{S_1}^+ \varphi \leftarrow \Gamma \Vdash_{C_2}^+ \varphi$ suffices, which is a consequence of our 'Completion Lemma' showing how to complete a semilattice into a complete lattice in a satisfaction-preserving and -reflecting way.

Corollary (compactness and decidability)

Definition (recall)

 $S_1 := \{ (S, \leq) \mid (S, \leq) \text{ is a semilattice} \},\$

 $S_2 := \{(S, \leq) \mid (S, \leq) \text{ is a semilattice with a bottom element}\},\$

 $C_1 := \{(S, \leq) \mid (S, \leq) \text{ is a poset with all non-empty joins}\},\$

 $\mathcal{C}_2 := \{ (S, \leq) \mid (S, \leq) \text{ is a poset with all joins} \}$

Theorem (Entailment Invariance for Choice of Frames)

Given any choice of semantics and valuations, and any $X, Y \in \{S_1, S_2, C_1, C_2\}$,

 $\Gamma \Vdash^+_X \varphi \quad \text{ iff } \quad \Gamma \Vdash^+_Y \varphi.$

Proof idea.

Clearly, $\Gamma \Vdash_{\mathcal{S}_1}^+ \varphi \Rightarrow \Gamma \Vdash_{\mathcal{S}_2/\mathcal{C}_1}^+ \varphi \Rightarrow \Gamma \Vdash_{\mathcal{C}_2}^+ \varphi.$

Therefore, $\Gamma \Vdash_{S_1}^+ \varphi \leftarrow \Gamma \Vdash_{C_2}^+ \varphi$ suffices, which is a consequence of our 'Completion Lemma' showing how to complete a semilattice into a complete lattice in a satisfaction-preserving and -reflecting way.

Corollary (compactness and decidability)

Definition (recall)

 $S_1 := \{ (S, \leq) \mid (S, \leq) \text{ is a semilattice} \},\$

 $S_2 := \{(S, \leq) \mid (S, \leq) \text{ is a semilattice with a bottom element}\},\$

 $C_1 := \{(S, \leq) \mid (S, \leq) \text{ is a poset with all non-empty joins}\},\$

 $\mathcal{C}_2 := \{ (S, \leq) \mid (S, \leq) \text{ is a poset with all joins} \}$

Theorem (Entailment Invariance for Choice of Frames)

Given any choice of semantics and valuations, and any $X, Y \in \{S_1, S_2, C_1, C_2\}$,

 $\Gamma \Vdash^+_X \varphi \quad \text{ iff } \quad \Gamma \Vdash^+_Y \varphi.$

Proof idea.

Clearly, $\Gamma \Vdash_{S_1}^+ \varphi \Rightarrow \Gamma \Vdash_{S_2/C_1}^+ \varphi \Rightarrow \Gamma \Vdash_{C_2}^+ \varphi$. Therefore, $\Gamma \Vdash_{S_1}^+ \varphi \leftarrow \Gamma \Vdash_{C_2}^+ \varphi$ suffices, which is a consequence of our 'Completion Lemma' showing how to complete a semilattice into a complete lattice in a satisfaction-preserving and -reflecting way.

Corollary (compactness and decidability)

Definition (recall)

 $\mathcal{S}_1 := \{ (S, \leq) \mid (S, \leq) \text{ is a semilattice} \},\$

 $S_2 := \{(S, \leq) \mid (S, \leq) \text{ is a semilattice with a bottom element}\},\$

 $C_1 := \{(S, \leq) \mid (S, \leq) \text{ is a poset with all non-empty joins}\},\$

 $\mathcal{C}_2 := \{ (S, \leq) \mid (S, \leq) \text{ is a poset with all joins} \}$

Theorem (Entailment Invariance for Choice of Frames)

Given any choice of semantics and valuations, and any $X, Y \in \{S_1, S_2, C_1, C_2\}$,

 $\Gamma \Vdash^+_X \varphi \quad \text{ iff } \quad \Gamma \Vdash^+_Y \varphi.$

Proof idea.

Clearly, $\Gamma \Vdash_{\mathcal{S}_1}^+ \varphi \Rightarrow \Gamma \Vdash_{\mathcal{S}_2/\mathcal{C}_1}^+ \varphi \Rightarrow \Gamma \Vdash_{\mathcal{C}_2}^+ \varphi$. Therefore, $\Gamma \Vdash_{\mathcal{S}_1}^+ \varphi \leftarrow \Gamma \Vdash_{\mathcal{C}_2}^+ \varphi$ suffices, which is a consequence of our 'Completion Lemma' showing how to complete a semilattice into a complete lattice in a satisfaction-preserving and -reflecting way.

Corollary (compactness and decidability)

Definition (recall)

 $S_1 := \{ (S, \leq) \mid (S, \leq) \text{ is a semilattice} \},\$

 $S_2 := \{(S, \leq) \mid (S, \leq) \text{ is a semilattice with a bottom element}\},\$

 $C_1 := \{(S, \leq) \mid (S, \leq) \text{ is a poset with all non-empty joins}\},\$

 $\mathcal{C}_2 := \{ (S, \leq) \mid (S, \leq) \text{ is a poset with all joins} \}$

Theorem (Entailment Invariance for Choice of Frames)

Given any choice of semantics and valuations, and any $X, Y \in \{S_1, S_2, C_1, C_2\}$,

 $\Gamma \Vdash^+_X \varphi \quad \text{ iff } \quad \Gamma \Vdash^+_Y \varphi.$

Proof idea.

Clearly, $\Gamma \Vdash_{\mathcal{S}_1}^+ \varphi \Rightarrow \Gamma \Vdash_{\mathcal{S}_2/\mathcal{C}_1}^+ \varphi \Rightarrow \Gamma \Vdash_{\mathcal{C}_2}^+ \varphi$. Therefore, $\Gamma \Vdash_{\mathcal{S}_1}^+ \varphi \leftarrow \Gamma \Vdash_{\mathcal{C}_2}^+ \varphi$ suffices, which is a consequence of our 'Completion Lemma' showing how to complete a semilattice into a complete lattice in a satisfaction-preserving and -reflecting way.

Corollary (compactness and decidability)

Lemma

Let (S, \leq) be a semilattice and $\mathcal{U}(S) \subseteq \mathcal{P}(S)$ its collection of upsets. Then (i) $(\mathcal{U}(S), \supseteq)$ forms a complete lattice, and (ii) for all $s, t, u \in S$:

 $s = \sup_{\leq} \{t, u\}$ iff $\uparrow s = \uparrow t \cap \uparrow u.$

Lemma

For all formulas $\varphi \in \mathcal{L}_T$ and \mathbb{M}, s s.t. $\mathbb{M}, s \Vdash^+ \varphi$, there are literals $l_1, \ldots l_n$ s.t.

- 1. $(l_1 \wedge \cdots \wedge l_n) \Vdash^+_{\mathcal{S}_1} \varphi$,
- 2. $\mathbb{M}, s \Vdash^+ (l_1 \wedge \cdots \wedge l_n).$

Completion Lemma

Let $\mathbb{M} = (S, \leq, V^+, V^-)$ be a semilattice model. Then for all $\varphi \in \mathcal{L}_T$ and all $s \in S$,

 $(\mathcal{U}(S), \supseteq, V'^+, V'^-), \uparrow s \Vdash^+ \varphi \quad \text{iff} \quad \mathbb{M}, s \Vdash^+ \varphi,$

Lemma

Let (S, \leq) be a semilattice and $\mathcal{U}(S) \subseteq \mathcal{P}(S)$ its collection of upsets. Then (i) $(\mathcal{U}(S), \supseteq)$ forms a complete lattice, and (ii) for all $s, t, u \in S$:

 $s = \sup_{\leq} \{t, u\}$ iff $\uparrow s = \uparrow t \cap \uparrow u$.

Lemma

For all formulas $\varphi \in \mathcal{L}_T$ and \mathbb{M}, s s.t. $\mathbb{M}, s \Vdash^+ \varphi$, there are literals $l_1, \ldots l_n$ s.t.

- 1. $(l_1 \wedge \cdots \wedge l_n) \Vdash^+_{\mathcal{S}_1} \varphi$,
- 2. $\mathbb{M}, s \Vdash^+ (l_1 \wedge \cdots \wedge l_n).$

Completion Lemma

Let $\mathbb{M} = (S, \leq, V^+, V^-)$ be a semilattice model. Then for all $\varphi \in \mathcal{L}_T$ and all $s \in S$,

 $(\mathcal{U}(S), \supseteq, V'^+, V'^-), \uparrow s \Vdash^+ \varphi \quad \text{iff} \quad \mathbb{M}, s \Vdash^+ \varphi,$

Lemma

Let (S, \leq) be a semilattice and $\mathcal{U}(S) \subseteq \mathcal{P}(S)$ its collection of upsets. Then (i) $(\mathcal{U}(S), \supseteq)$ forms a complete lattice, and (ii) for all $s, t, u \in S$:

 $s = \sup_{\leq} \{t, u\}$ iff $\uparrow s = \uparrow t \cap \uparrow u$.

Lemma

For all formulas $\varphi \in \mathcal{L}_T$ and \mathbb{M}, s s.t. $\mathbb{M}, s \Vdash^+ \varphi$, there are literals $l_1, \ldots l_n$ s.t.

- 1. $(l_1 \wedge \cdots \wedge l_n) \Vdash^+_{\mathcal{S}_1} \varphi$,
- 2. $\mathbb{M}, s \Vdash^+ (l_1 \wedge \cdots \wedge l_n).$

Completion Lemma

Let $\mathbb{M} = (S, \leq, V^+, V^-)$ be a semilattice model. Then for all $\varphi \in \mathcal{L}_T$ and all $s \in S$,

 $\left(\mathcal{U}(S),\supseteq,V'^+,V'^-\right),\uparrow s\Vdash^+\varphi \quad \text{iff} \quad \mathbb{M},s\Vdash^+\varphi,$

Lemma

Let (S, \leq) be a semilattice and $\mathcal{U}(S) \subseteq \mathcal{P}(S)$ its collection of upsets. Then (i) $(\mathcal{U}(S), \supseteq)$ forms a complete lattice, and (ii) for all $s, t, u \in S$:

 $s = \sup_{\leq} \{t, u\}$ iff $\uparrow s = \uparrow t \cap \uparrow u$.

Lemma

For all formulas $\varphi \in \mathcal{L}_T$ and \mathbb{M}, s s.t. $\mathbb{M}, s \Vdash^+ \varphi$, there are literals $l_1, \ldots l_n$ s.t.

- 1. $(l_1 \wedge \cdots \wedge l_n) \Vdash^+_{\mathcal{S}_1} \varphi$,
- 2. $\mathbb{M}, s \Vdash^+ (l_1 \wedge \cdots \wedge l_n).$

Completion Lemma

Let $\mathbb{M} = (S, \leq, V^+, V^-)$ be a semilattice model. Then for all $\varphi \in \mathcal{L}_T$ and all $s \in S$,

 $(\mathcal{U}(S), \supseteq, V'^+, V'^-), \uparrow s \Vdash^+ \varphi \quad \text{iff} \quad \mathbb{M}, s \Vdash^+ \varphi,$

Lemma

Let (S, \leq) be a semilattice and $\mathcal{U}(S) \subseteq \mathcal{P}(S)$ its collection of upsets. Then (i) $(\mathcal{U}(S), \supseteq)$ forms a complete lattice, and (ii) for all $s, t, u \in S$:

 $s = \sup_{\leq} \{t, u\}$ iff $\uparrow s = \uparrow t \cap \uparrow u.$

Lemma

For all formulas $\varphi \in \mathcal{L}_T$ and \mathbb{M}, s s.t. $\mathbb{M}, s \Vdash^+ \varphi$, there are literals $l_1, \ldots l_n$ s.t.

- 1. $(l_1 \wedge \cdots \wedge l_n) \Vdash^+_{\mathcal{S}_1} \varphi$,
- 2. $\mathbb{M}, s \Vdash^+ (l_1 \wedge \cdots \wedge l_n).$

Completion Lemma

Let $\mathbb{M} = (S, \leq, V^+, V^-)$ be a semilattice model. Then for all $\varphi \in \mathcal{L}_T$ and all $s \in S$,

$$(\mathcal{U}(S), \supseteq, V'^+, V'^-), \uparrow s \Vdash^+ \varphi \quad \text{iff} \quad \mathbb{M}, s \Vdash^+ \varphi,$$

- Translated into FOL, achieving r.e. and compactness (for some truthmaker logics).
- Developed and proved the FMP, achieving decidability (for some truthmaker logics).
- Showed that truthmaker consequence is invariant for choice of frames, allowing us to additionally conclude that 'all' truthmaker logics are compact and decidable.
- Gave a modal perspective on truthmaker semantics: adding Boolean negation results in modal information logics.

- Translated into FOL, achieving r.e. and compactness (for some truthmaker logics).
- Developed and proved the FMP, achieving decidability (for some truthmaker logics).
- Showed that truthmaker consequence is invariant for choice of frames, allowing us to additionally conclude that 'all' truthmaker logics are compact and decidable.
- Gave a modal perspective on truthmaker semantics: adding Boolean negation results in modal information logics.

- Translated into FOL, achieving r.e. and compactness (for some truthmaker logics).
- Developed and proved the FMP, achieving decidability (for some truthmaker logics).
- Showed that truthmaker consequence is invariant for choice of frames, allowing us to additionally conclude that 'all' truthmaker logics are compact and decidable.
- Gave a modal perspective on truthmaker semantics: adding Boolean negation results in modal information logics.

- Translated into FOL, achieving r.e. and compactness (for some truthmaker logics).
- Developed and proved the FMP, achieving decidability (for some truthmaker logics).
- Showed that truthmaker consequence is invariant for choice of frames, allowing us to additionally conclude that 'all' truthmaker logics are compact and decidable.
- Gave a modal perspective on truthmaker semantics: adding Boolean negation results in modal information logics.

- Translated into FOL, achieving r.e. and compactness (for some truthmaker logics).
- Developed and proved the FMP, achieving decidability (for some truthmaker logics).
- Showed that truthmaker consequence is invariant for choice of frames, allowing us to additionally conclude that 'all' truthmaker logics are compact and decidable.
- Gave a modal perspective on truthmaker semantics: adding Boolean negation results in modal information logics.

- Translated into FOL, achieving r.e. and compactness (for some truthmaker logics).
- Developed and proved the FMP, achieving decidability (for some truthmaker logics).
- Showed that truthmaker consequence is invariant for choice of frames, allowing us to additionally conclude that 'all' truthmaker logics are compact and decidable.
- Gave a modal perspective on truthmaker semantics: adding Boolean negation results in modal information logics.

Thank you sincerely for attending, even on a holiday :-)

References I

- Fine, K. (2017a). "A Theory of Truthmaker Content I: Conjunction, Disjunction and Negation". In: Journal of Philosophical Logic 46.6, pp. 625–674. DOI: 10.1007/s10992-016-9413-y (cit. on pp. 9–16).
- (2017b). "A Theory of Truthmaker Content II: Subject-Matter, Common Content, Remainder and Ground". In: Journal of Philosophical Logic 46.6, pp. 675–702. DOI: 10.1007/s10992-016-9419-5 (cit. on pp. 9–16).
- (2017c). "Truthmaker Semantics". In: A Companion to the Philosophy of Language. John Wiley Sons, Ltd. Chap. 22, pp. 556–577. DOI: https://doi.org/10.1002/9781118972090.ch22 (cit. on pp. 3–7).
- Fine, K. and M. Jago (2019). "Logic for Exact Entailment". In: The Review of Symbolic Logic 12.3, pp. 536–556. DOI: 10.1017/S1755020318000151 (cit. on pp. 3–7).

Jago, M. (2017). "Propositions as Truthmaker Conditions". In: Argumenta 2.2, pp. 293–308 (cit. on pp. 9–16).

Korbmacher, J. (2022). "Proof Systems for Exact Entailment". In: The Review of Symbolic Logic, pp. 1–36. DOI: 10.1017/S175502032200020X (cit. on pp. 3–7).

Van Benthem, J. (2019). "Implicit and Explicit Stances in Logic". In: Journal of Philosophical Logic 48.3, pp. 571–601. DOI: 10.1007/s10992-018-9485-y (cit. on pp. 77 sqq.). Our proof techniques bear a resemblance to modal logic. Can we elucidate and precisify this resemblance?

A modal perspective on truthmaker semantics

Definition (van Benthem (2019)'s translation)

Let \mathcal{L}_M be the language of modal information logic; i.e., the modal language with a single binary modality ' $\langle \sup \rangle$ ' (for supremum). Define the following translation:

Definition

Let $\mathcal{L}_{M}^{\{p^{T},p^{F},\vee,\langle \sup \rangle\}} \subseteq \mathcal{L}_{M}$ be the fragment of the language of modal information logic restricted to the propositional letters, connective ' \vee ' and modality ' $\langle \sup \rangle$ '. Define the following translation:

A modal perspective on truthmaker semantics

Definition (van Benthem (2019)'s translation)

Let \mathcal{L}_M be the language of modal information logic; i.e., the modal language with a single binary modality ' $\langle \sup \rangle$ ' (for supremum). Define the following translation:

$(p)^{+}$	=	p^T ,	$(p)^{-}$	=	p^F ,
$(\neg \varphi)^+$	=	$\varphi^{-},$	$(\neg \varphi)^-$	=	$\varphi^+,$
$\left(\varphi\wedge\psi\right)^+$	=	$\langle \sup \rangle \varphi^+ \psi^+,$	$(\varphi \wedge \psi)^-$	=	$\varphi^- \lor \psi^-,$
$(\varphi \lor \psi)^+$	=	$\varphi^+ \lor \psi^+,$	$\left(\varphi \vee \psi\right)^-$	=	$\langle \sup \rangle \varphi^- \psi^$

Definition

Let $\mathcal{L}_{M}^{\{p^{T},p^{F},\vee,\langle \sup \rangle\}} \subseteq \mathcal{L}_{M}$ be the fragment of the language of modal information logic restricted to the propositional letters, connective ' \vee ' and modality ' $\langle \sup \rangle$ '. Define the following translation:

$$(p^T)^{\bullet} = p, \qquad (p^F)^{\bullet} = \neg p, (\langle \sup \rangle \varphi \psi)^{\bullet} = \varphi^{\bullet} \wedge \psi^{\bullet}, \qquad (\varphi \lor \psi)^{\bullet} = \varphi^{\bullet} \lor \psi^{\bullet}.$$

A modal perspective on truthmaker semantics

Definition (van Benthem (2019)'s translation)

Let \mathcal{L}_M be the language of modal information logic; i.e., the modal language with a single binary modality ' $\langle \sup \rangle$ ' (for supremum). Define the following translation:

$(p)^{+}$	=	p^T ,	$(p)^{-}$	=	p^F ,
$(\neg \varphi)^+$	=	$\varphi^{-},$	$(\neg \varphi)^-$	=	$\varphi^+,$
$(\varphi \wedge \psi)^+$	=	$\langle \sup \rangle \varphi^+ \psi^+,$	$(\varphi \wedge \psi)^-$	=	$\varphi^- \lor \psi^-,$
$(\varphi \lor \psi)^+$	=	$\varphi^+ \lor \psi^+,$	$(\varphi \lor \psi)^-$	=	$\langle \sup \rangle \varphi^- \psi^$

Definition

Let $\mathcal{L}_{M}^{\{p^{T},p^{F},\vee,\langle \sup \rangle\}} \subseteq \mathcal{L}_{M}$ be the fragment of the language of modal information logic restricted to the propositional letters, connective ' \vee ' and modality ' $\langle \sup \rangle$ '. Define the following translation:

$$(p^T)^{\bullet} = p, \qquad (p^F)^{\bullet} = \neg p, (\langle \sup \rangle \varphi \psi)^{\bullet} = \varphi^{\bullet} \land \psi^{\bullet}, \qquad (\varphi \lor \psi)^{\bullet} = \varphi^{\bullet} \lor \psi^{\bullet}.$$

Proposition

The translations $(\cdot)^+$ and $(\cdot)^{\bullet}$ are each other's 'inverses':

 $\begin{array}{ll} \text{For all } \varphi \in \mathcal{L}_T \text{ and all } \mathbb{M}, s \colon & \mathbb{M}, s \Vdash^+ \varphi \quad \text{iff} \quad \mathbb{M}, s \Vdash^+ \left(\varphi^+\right)^\bullet. \\ \text{For all } \varphi \in \mathcal{L}_M^{\{p^T, p^F, \vee, \langle \sup \rangle\}} \text{ and all } \mathbb{M}, s \colon & \mathbb{M}, s \Vdash \varphi \quad \text{iff} \quad \mathbb{M}, s \Vdash \left(\varphi^\bullet\right)^+. \end{array}$

Corollary (Characterization)

Truthmaker logics are (in a precise mathematical sense) the $\{\forall, \langle \sup \rangle\}$ -fragments of modal information logics, or alternatively, modal information logics arise from augmenting truthmaker logics with classical negation.

Proposition

The translations $(\cdot)^+$ and $(\cdot)^{\bullet}$ are each other's 'inverses':

 $\begin{array}{ll} \text{For all } \varphi \in \mathcal{L}_T \text{ and all } \mathbb{M}, s \colon & \mathbb{M}, s \Vdash^+ \varphi \quad \text{iff} \quad \mathbb{M}, s \Vdash^+ \left(\varphi^+\right)^\bullet. \\ \text{For all } \varphi \in \mathcal{L}_M^{\{p^T, p^F, \vee, \langle \sup \rangle\}} \text{ and all } \mathbb{M}, s \colon & \mathbb{M}, s \Vdash \varphi \quad \text{iff} \quad \mathbb{M}, s \Vdash \left(\varphi^\bullet\right)^+. \end{array}$

Corollary (Characterization)

Truthmaker logics are (in a precise mathematical sense) the $\{\lor, \langle \sup \rangle\}$ -fragments of modal information logics, or alternatively, modal information logics arise from augmenting truthmaker logics with classical negation.