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Outline of the talk

– Context, motivation and general aim
– Defining the truthmaker framework
– Presenting proof (outlines) of formal properties of
‘truthmaker logics’

– Conclusion
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Context and general aim

Background

• (Finean) truthmaker semantics (TS) was introduced to model ‘exact
truthmaking’.

• Great interest in TS as a framework for analyzing various philosophical
and linguistic phenomena, e.g., metaphysical grounding,
counterfactuals and implicatures [cf. Fine (2017c)].

• But limited study of the various logics arising from the semantics
[exceptions being Fine and Jago (2019) and Korbmacher (2022)].

This talk aims to address this gap by exploring numerous ‘truthmaker logics’

In particular:

1. Translations and Compactness
2. Finite Model Property (FMP) and Decidability
3. Connection with modal (information) logic [will perhaps be skipped]
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But why be interested in the logics of
truthmaker semantics?
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Motivation

Why logics of truthmaker semantics?

Several philosophical concepts find expression as consequence or
equivalence within a truthmaker logic:

• According to Jago (2017), both samesaying of sentences and identity of
propositions amount to truthmaker equivalence.

• As studied by Fine (2017a,b), notions of ground and of containment can
be captured by truthmaker consequence.1

But primarily, motivated by logical curiosity:

• Is truthmaker consequence compact? I.e., determined by behaviour on
finite sets of formulae.

• Is truthmaker consequence decidable?
• And can we develop something like a truthmaker analogue of the FMP?
• Do the answers to these questions vary across the truthmaker logics?
• And even if not, which – if any – of these logics coincide?

1(i) P weakly grounds Q iff P truthmaker entails Q;
(ii) P weakly partially grounds Q iff (P ∧Q) ∨Q is truthmaker equivalent to Q; and
(iii) P contains Q iff P ∧Q is truthmaker equivalent to P .
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I’ve now discussed why it’s worthwhile to study
the metalogic of truthmaking [and hopefully
convinced you in the process ^^] ... but what

even is truthmaker semantics?
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Defining truthmaker semantics

Definition (language and semantics)
The language is given by

φ ::= p | ¬φ | φ ∨ φ | φ ∧ φ.

The semantics are bilateral (truthmaking ⊩+

and falsitymaking ⊩−), and models come with
two valuations V +, V −:

M, s ⊩± p iff s ∈ V ±(p).

M, s ⊩± ¬φ iff M, s ⊩∓ φ.

M, s ⊩+ φ ∧ ψ iff ∃t, t′(t ⊩+ φ; t′ ⊩+ ψ;

s = sup{t, t′})

Example
s ⊩+ p ∧ q

t ⊩+ p t′ ⊩+ q

How about ‘∨’ and
falsitymaking ‘∧’?

Truthmaker framework: Semantics parameter 1
Non-incl.: M, s ⊩+ φ ∨ ψ iff M, s ⊩+ φ or M, s ⊩+ ψ.

Incl.: M, s ⊩+ φ ∨ ψ iff M, s ⊩+ φ or M, s ⊩+ ψ or M, s ⊩+ φ ∧ ψ

Falsitymaking ⊩− of ‘∨’ and ‘∧’ are defined by de Morgan’s. 7
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Convex truthmaking

Non-convexity
The presented semantics allow for non-convex truthmaking:

cases where r ≤ s ≤ t,M, r ⊩+ φ andM, t ⊩+ φ, butM, s ⊮+ φ.

To avoid this,2 we can define convex truth- and falsitymaking:

Truthmaker framework: Semantics parameter 2

Convex: M, s ⊩±,c φ :iff ∃r, t ∈ S such thatM, r ⊩± φ, M, t ⊩± φ,

and r ≤ s ≤ t.
‘Non-convex’: M, s ⊩± φ iff M, s ⊩± φ.

2If modeling, e.g., containment via truthmaker semantics, convexity enforces
anti-symmetry of the containment relation.

8
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Defining truthmaker logics

Truthmaker framework: Valuation parameter
• All: Any pairs of valuations V ± : P → P(S) are admissible.
• Closure under binary joins: if {s, t} ⊆ V ±(p), then sup{s, t} ∈ V ±(p).
• Non-vacuity: V +(p) ̸= ∅ for all p ∈ P and/or V −(p) ̸= ∅ for all p ∈ P.

Truthmaker framework: Frame parameter
S1 := {(S,≤) | (S,≤) is a semilattice}.
S2 := {(S,≤) | (S,≤) is a semilattice with a bottom element}.
C1 := {(S,≤) | (S,≤) is a poset with all non-empty joins}.
C2 := {(S,≤) | (S,≤) is a poset with all joins}

(so C2 is the class of complete lattices.)

Truthmaker logics
For any choice of semantics, valuations and frames, we get a truthmaker
consequence relation by defining

Γ ⊩+ φ :iff wheneverM, s ⊩+ γ for all γ ∈ Γ, it is also the case thatM, s ⊩+ φ
9
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So we have (at least) 2× 2× 4× 4 = 64 logics to
survey . . .
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Luckily, they can be dealt with (rather)
uniformly!
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Proof strategy

Proceeding from here, our proof strategy is as follows:

1. Inherit compactness and recursive enumerability from first-order
logic through translations for semilattice truthmaker logics.

2. Develop and prove a truthmaker analogue of the finite model
property to obtain decidability for semilattice truthmaker logics.

3. Show that truthmaker consequence is invariant for choice of
frames, which also entails that ‘all’ truthmaker logics are
(compact and) decidable.
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Translations into first-order logic

Definition (translation into FOL)
We define the following translation-pair into first-order logic (FOL):

ST+
x (p) = PT x

ST−
x (p) = PF x

ST+
x (¬ϕ) = ST−

x (ϕ)

ST−
x (¬ϕ) = ST+

x (ϕ)

ST+
x (ϕ ∧ ψ) = ∃y, z

(
x = sup{y, z} ∧ ST+

y (ϕ) ∧ ST+
z (ψ)

)
ST−

x (ϕ ∧ ψ) = ST−
x (ϕ) ∨ ST−

x (ψ)

ST+
x (ϕ ∨ ψ) = ST+

x (ϕ) ∨ ST+
x (ψ)

ST−
x (ϕ ∨ ψ) = ∃y, z

(
x = sup{y, z} ∧ ST−

y (ϕ) ∧ ST−
z (ψ)

)
Proposition (correspondence)
For all modelsM and all φ ∈ LT , we have:

For all states s ∈ M: (i) M, s ⊩+ φ iff M ⊨ ST+
x (φ)[s]; and

(ii) M, s ⊩− φ iff M ⊨ ST−
x (φ)[s].
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ST−
x (p) = PF x

ST+
x (¬ϕ) = ST−

x (ϕ)

ST−
x (¬ϕ) = ST+

x (ϕ)

ST+
x (ϕ ∧ ψ) = ∃y, z

(
x = sup{y, z} ∧ ST+
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Compactness and recursive enumerability

Proposition (semilattice compactness and r.e.)
All semilattice truthmaker logics are

• compact: if Γ ⊩+ φ, then ΓF ⊩+ φ for some finite ΓF ⊆ Γ; and
• r.e.: For finite ΓF , we can effectively enumerate (ΓF , φ) s.t. ΓF ⊩+ φ.

Proof.
Let J be the first-order formula defining (join-)semilattices. For compactness, the
argument is essentially that

Γ ⊩+ φ iff ST+
x (Γ) ∪ {J} ⊨ ST+

x (φ)

(c)
iff ST+

x (ΓF ) ∪ {J} ⊨ ST+
x (φ) iff ΓF ⊩+ φ,

where ΓF ⊆ Γ is finite.
For r.e., the argument is essentially that

ΓF ⊩+ φ iff ST+
x (ΓF ) ∪ {J} ⊨ ST+

x (φ)

iff ⊨
∧

(ST+
x (ΓF ) ∪ {J}) → ST+

x (φ).

14
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FMP and decidability

Initial observation: A direct analogue of, e.g., the modal logic FMP is trivial and does
nothing for proving decidability. Instead, we prove the following:

Theorem (Truthmaker FMP)
For any modelM0 = (S0,≤0, V

+
0 , V −

0 ), state s ∈ S0, and finite set of formulas
ΓF ⊆ LT s.t. M0, s ⊩+ ΓF ,

there is a finite submodelM1 s.t. (a)M1, s ⊩+ ΓF ,

and (b) for all φ ∈ LT : M0, s ⊮± φ ⇒ M1, s ⊮± φ.

Proof (idea).
In outline, the proof is as follows:

• For each γ ∈ ΓF , we can choose a finite set of states T (γ, s) by virtue of which
s ⊩+ γ.

• DefineM1 := (S1,≤1, V
+
1 , V −

1 ) where (S1,≤1) is the sub-semilattice
generated by

∪
γ∈ΓF

T (γ, s), and V ±
1 are the restrictions of V ±

0 .

• One can then show (a) and (b).

Corollary (semilattice decidability)
All semilattice truthmaker logics are decidable: for finite ΓF , it is decidable whether
ΓF ⊩+ φ. 15
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What about other classes of frames?

16



Limitation of translation method: it only
applies when conditions are first-order

definable. And having, e.g., all joins is not.

17



Second-order frames

Definition (recall)
S1 := {(S,≤) | (S,≤) is a semilattice},
S2 := {(S,≤) | (S,≤) is a semilattice with a bottom element},
C1 := {(S,≤) | (S,≤) is a poset with all non-empty joins},
C2 := {(S,≤) | (S,≤) is a poset with all joins}

Theorem (Entailment Invariance for Choice of Frames)

Given any choice of semantics and valuations, and any X,Y ∈ {S1,S2, C1, C2},
Γ ⊩+

X φ iff Γ ⊩+
Y φ.

Proof idea.
Clearly, Γ ⊩+

S1
φ ⇒ Γ ⊩+

S2/C1
φ ⇒ Γ ⊩+

C2
φ.

Therefore, Γ ⊩+
S1
φ⇐ Γ ⊩+

C2
φ suffices, which is a consequence of our ‘Completion

Lemma’ showing how to complete a semilattice into a complete lattice in a
satisfaction-preserving and -reflecting way.

Corollary (compactness and decidability)
‘All’ truthmaker logics are compact and decidable. 18
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Completion Lemma

Lemma
Let (S,≤) be a semilattice and U(S) ⊆ P(S) its collection of upsets. Then (i)
(U(S),⊇) forms a complete lattice, and (ii) for all s, t, u ∈ S:

s = sup≤{t, u} iff ↑s = ↑t ∩ ↑u.

Lemma
For all formulas φ ∈ LT andM, s s.t. M, s ⊩+ φ, there are literals l1, . . . ln s.t.
1. (l1 ∧ · · · ∧ ln) ⊩+

S1
φ ,

2. M, s ⊩+ (l1 ∧ · · · ∧ ln).

Completion Lemma
LetM = (S,≤, V +, V −) be a semilattice model. Then for all φ ∈ LT and all
s ∈ S, (

U(S),⊇, V ′+, V ′−) , ↑s ⊩+ φ iff M, s ⊩+ φ,

where V ′±(p) := {↑s | s ∈ V ±(p)}.
19
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Conclusion

Summary:

• Translated into FOL, achieving r.e. and compactness (for some
truthmaker logics).

• Developed and proved the FMP, achieving decidability (for some
truthmaker logics).

• Showed that truthmaker consequence is invariant for choice of
frames, allowing us to additionally conclude that ‘all’ truthmaker
logics are compact and decidable.

• Gave a modal perspective on truthmaker semantics: adding
Boolean negation results in modal information logics.
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Thank you sincerely for attending, even on a
holiday :-)
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Our proof techniques bear a resemblance to
modal logic. Can we elucidate and precisify

this resemblance?
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A modal perspective on truthmaker semantics

Definition (van Benthem (2019)’s translation)
Let LM be the language of modal information logic; i.e., the modal language
with a single binary modality ‘⟨sup⟩’ (for supremum). Define the following
translation:

(p)+ = pT , (p)− = pF ,

(¬φ)+ = φ−, (¬φ)− = φ+,

(φ ∧ ψ)+ = ⟨sup⟩φ+ψ+, (φ ∧ ψ)− = φ− ∨ ψ−,

(φ ∨ ψ)+ = φ+ ∨ ψ+, (φ ∨ ψ)− = ⟨sup⟩φ−ψ−.

Definition

Let L{pT ,pF ,∨,⟨sup⟩}
M ⊆ LM be the fragment of the language of modal

information logic restricted to the propositional letters, connective ‘∨’ and
modality ‘⟨sup⟩’. Define the following translation:

(pT )• = p, (pF )• = ¬p,
(⟨sup⟩φψ)• = φ• ∧ ψ•, (φ ∨ ψ)• = φ• ∨ ψ•.
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A modal perspective on truthmaker semantics (continued)

Proposition
The translations (·)+ and (·)• are each other’s ‘inverses’:

For all φ ∈ LT and allM, s: M, s ⊩+ φ iff M, s ⊩+ (
φ+)• .

For all φ ∈ L{pT ,pF ,∨,⟨sup⟩}
M and allM, s: M, s ⊩ φ iff M, s ⊩ (φ•)

+
.

Corollary (Characterization)
Truthmaker logics are (in a precise mathematical sense) the
{∨, ⟨sup⟩}-fragments of modal information logics, or alternatively, modal
information logics arise from augmenting truthmaker logics with classical
negation.
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